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CARTESIAN DYNAMICS OF SIMPLE MOLECULES 
VI CENTROSYMMETRIC LINEAR PENTATOMICS 

Key Words: Molecular vibrations; infrared spectroscopy; 
Raman spectroscopy; lattice dynamics 

J . H .  Lefebvre* and A. Anderson 

Department of Physics, 
University of Waterloo, 

Waterloo, Ontario, 
Canada. N2L 3G1 

ABSTRACT 

A simple spring model for molecular vibrations, which uses 
Cartesian co-ordinates for both longitudinal and transverse 
displacements, is applied to centrosymmetric linear pentatomic 
molecules such as carbon suboxide and carbon subsulphide. 
Analytical expressions for the four stretching and three bending 
mode frequencies are derived in terms of seven independent force 
constants. By substitution of Raman and infrared frequencies, 
values of these force constants are obtained and briefly 
discussed. Eigenvectors of the normal modes and eigenfrequencies 
of various isotopic species are also calculated. 

INTRODUCTION 
1-5 In previous papers , a simple spring model for molecular 

vibrations. which uses Cartesian co-ordinates was described and 

applied to diatomic, triatomic and quadratomic molecules. The 

rationale for this approach, which was shown to be equivalent to 

* Present address: Department of Physics, McMaster University, 
Hamilton, Ontario, Canada, L8S 4L8. 
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996 LEFEBbHI.: AND A N L I L . . K S O N  

the usual one involving internal co-ordinates, is that i t  may be 

readily extended to lattice dynamics calculations , in which a 

uniform treatment of both intra- and inter- molecular 

interactions is used, leading to estimates of crystal field 

splitting5 of internal modes as well as frequencies of lattice 

modes. I n  this communication, the model is applied to the case 

of linear pentatomic molecules, such as carbon suboxide and 

carbon subsulphide. 

6-10 

Analytical expressions are derived for the normal mode 

frequencies of these molecules in terms of longitudinal and 

transverse force constants, atomic masses and bond lengths. Values 

of these force constants are obtained by substitution of thc 

observed Raman and infrared fundamental frequencies. The form o r  

the normal modes is verified by calculation of the eigenvectors. 

Finally, the eigenfrequencies of various isotopic species arc 

calculated. 

The geometry for these A B -type molecules, which have point 

group D is shown in Figure l ( a ) .  There are 15 degrees of 

freedom, of which 3 correspond to pure translations and 2 to pur-e 

rotations. The remaining 10 internal degrees of freedom comprise 

4 longitudinal or stretching modes which have non-degenerate 

representations ( w  and w both of u* species and w and w of u- 
2 '  4 u  

species) and 3 transverse or bending modes, which have doubly 

degenerate representations ( w 5  of n species and w and w of nu 

species). The 3 gerade modes are Raman active and the 4 uneerade 

modes are infrared active. These 7 observed frequencies may be 

2 3  

mh' 
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FIG. 1 Geometry and Spring Constant Model for A2B3 Linear 

Molecules 

(a) Geometry, showing masses and bond lengths. 

(b) 

( c )  Transverse Springs: 62, A 3 ,  6 and 6 . 

Longitudinal Springs: k 1' k2, k3 and k4. 

used, in principle, to find values of 4 stretching and 3 bending 

force constants. 

DESCRIPTION OF THE MODEL 

We first consider motion along the molecular z-axis and 

derive expressions for w w o and w . Following the 
1' 2' 3 
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998 LEFEBVRE A N D  ANDERSON 

principles outlined in earlier papers in this series'-3, we 

introduce longitudinal springs k k2, k3 and k4 as shown in 

Figure l(b). The equations of motion in the z direction for the 

5 atoms, according to Newton's second law and Hooke's law, are as 

follows: 

1' 

m A 1  z = -kl[zl - z2)  - k3[z1 - 2.1 

m B 2  z = -kl ( z 2  - zl], - k2[z2 - z3)  - k4[z2 - 21) 

m B 3  z = -k2(z3 - 2.1 - k3(z3 - zl] - k2(z3 - 2.) - k3[z3 - 2.1 

m 8 4  z = -k2(z4 - z3] - kl(z4 - 2.) - k4[z4 - z 2 ]  

m A 5  z = -kl ( z s  - z4] - k3[zs - 2.1 

For harmonic oscillations, z = z cos wt, and so 
n no 

2 z = -w22  cos wt = -w z 
n no n 

It is now convenient to introduce new variables, to make use of 

the symmetry properties of the normal modes, as follows: 

ql = z1 + z 5 ;  q2 = z2 + z . q3 = z3; q4 = z1 - z and q = z - z . 
4 '  5 5 2 4  

When the equations of motion are re-written in terms of q , a 

5 x 5 secular matrix is obtained, the determinant of which has 

the following block diagonal form: 

n 
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CARTESIAN DYNAMICS O F  S I M P L E  MOLECULES. VI 999 

0 0 

0 0 

k l  2k  3 

2 k 2  

m w ?k -k 
A 1 3  

m w 2k -k 
k l  B 1 2  

k 3  k 2  
m w2-2k  - 2 k 3  0 0 

k l  
m w2-k -k 

A 1 3  
0 0 0 

m w2-k - k  - 2 k 4  
k l  1 2  

0 0 0 

The lower block when expanded gives two roots, both non-zero, 

which correspond to the Raman active modes, w and w . A quadratic 

equation is obtained of the form Aw4 + Bw2 + C = 0 and the following 

relations are obtained: 

2 2  1 2  + w = -B/A = ( k l  + k2]/mA + ( k l  + k2  + 2k4]/m, 

1 2 2  = C/A = ( k l k 2  + k l k 3  + k2k, + 2 k  k + 2k3k4  /mAmB 

( 1 1  

( 2 )  
1 2  1 4  

The exact form of the eigcnvectors for these modes depends on the 

values of the force constants, but the higher frequency mode 

involves the symmetric stretching of both A - B  and B-B bonds, 

whereas the lower frequency mode is primarily the symmetric B-B 

stretch, with the central B atom stationary in both cases. The 

approximate form of these modes is shown in Figure Z(a1. 

The upper block of the determinant when expanded gives three 

roots, one of which i s  the pure translational mode, w with zero 

frequency. The other two correspond to the infrared active modes 

w and w . 

0' 

A cubic equation in w2 is obtained of the form 

2 Aid6 + Bw4 + Cw + D = 0 

= 0  
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1000 L E F E B V R E  A N D  ANDERSON 

t 

4 

4 o c j  
I 

t 7 

c 

i 4 

FIG. 2 Normal Modes of A B molecules 2 3  

(a) Longitudinal (Stretching) Modes 

(b) Transverse (Bending) Modes. 
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CARTESIAN DYNAMICS OF S I M P L E  MOLECULES. V I  1001 

It is readily shown after some algebraic manipulation that D = 0, 

so that w2 = 0 is a root. In addition, the following relations 

are obtained for the other two roots: 

w2 + w2 = -B/A = 
3 4  

w 2 2  w = C/A = (klk2 + klk3 + k2k,) (3mB + ZmA)/mz mA ( 4 )  
3 4  

A s  for the Raman active modes, the eigenvectors for w and w 

depend on the force constants, but the higher frequency mode, w 
3 '  

is the asymmetric combined A-B and B-B stretches and the lower 

frequency mode primarily the asymmetric B-B stretch as shown in 

Figure 2(a). I t  is noted that since the two non-central B atoms 

are in phase for these modes, the force constant k does not 

appear in equations (3) and ( 4 ) .  

From the four stretching mode frequencies (two Raman and two 

infrared), it should be possible to find optimum values for the 

four force constants k k 2 ,  k and k using equations ( 1 1 ,  (21, 

( 3 )  and ( 4 ) .  It is expected that those representing springs 

between adjacent (bonded) atoms, k l  and k2,  will be much larger 

than those between more d stant (non-bonded) atoms, k and k . 

1' 3 

4 

We next consider mot on perpendicular to the molecular axis. 

Five transverse springs, al. a2, a3, 6 and 6 are introduced. 

These are displayed as bow symbols in Figure l(c). I t  will be 

shown later that only three of these transverse force constants 

are independent. The equations of motion in the transverse 

(x or y) direction have the following form: 
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L E F E B Y K E  ANL! ANUI-KSON 

y4] - 6 3 ( ~ 3  - ~ 1 )  - s3(yl - ys] 

mBY4 = - d,[Y, - Y5) - s 2 ( y 4  - Y,) - dJY, - Y2) - d5(Y4 - Y ] ]  

We now make the u s u a l  substitution for harmonic oscillat.ions, 

yr, = -w2yno cos wt = -w2y 
n 

and introduce the following symmetry co-ordinates, similar to the 

longitudinal case: 

PI = Yl + Y s ?  P, = Y, + Y o n  P, = Y,, P, = Y, - Y, and P, = Y, - Y; 

The equations of motion are then re-written in terms of p , and 
n 

the following secular determinant in block diagonal form 

oh ta ined : 

0 0 

0 0 

'1+'5 263 

262 

m w 2 - 6  -6 -6 
A 1 3 5  

maw - 6  -6 -6 
61+65 B 1 2 5  

m w2-26 -26 0 0 
& 3  62 B 2 3  

0 0 0 m w 2 - 6  -6 -6 6 -$ 
A 1 3 5  

0 0 0 

is 

= o  
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CARTESIAN DYNAMICS OF S I M P L E  MOLECULES. V I  1003 

This determinant is very similar to that obtained for the 

longitudinal modes, with 6 ’ s  replacing k’s and with 6 = 0. 
5 

Expansion of the lower 2 x 2 block leads to the following 

equation: 

Au4 + Bu2 + C = 0 

where 

A = m m  B = - 6  + 6  + 6  m 6 + 6  
1 2’ ( I  5]1-[1 

and 

] - - 8J2 [ 1 3 5 1 2  I (  4 5  
c =  6 + 6  + 6  6 + 6  + 2 6  + a  

In order for a zero frequency root to exist, C must be equal to 

zero. Physically this results from a pure rotation about the 

centre of mass, which for these molecules coincides with the 

central atom. This mode is shown as W” in Figure 2(b). For 

this motion, if y, = y, then y, = ay, y3 = 0, y, = -ay and 

y5 = -y with a = el / k1 + e2). If these relations are 

substituted into the first two equations of motion, together with 

yl = y2 = 0, corresponding to no restoring forces, the following 

two equations are obtained after some algebraic re-arrangement: 

0 

Substitution of these expressions for 6 and 6 into the equation 

for the coefficient C confirms that it is indeed equal to zero. 
3 4 
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I t  is then easily shown that the non-zero root of the quadrntic 

equation has the following form: 

This corresponds to the Raman active T[  bending mode, the 

approximate form of which is shown in Figure 2(b). The a b s c n c c  

of ii in thc equation f.or w is explained physically by noting 

that the central three 13 atoms maintain their linearity for (his 

4 

mode, so that this bending force is not activated 

Expansion of the upper 3 x 3 block of the determinant lpads 

to a cubic equation in w of the following form: 

Au6 + B o 4  + Cw2 + D = 0 

After some routine algebra, i t  is confirmed that D = 0. so that 

one root has zero frequency. This corresponds to a pure 

translation of the whole molecule in the transverse direction, 

shown as w' in figure 2(b). Further manipulation of thc 

resulting quadratic equation leads to the following relations for 

the two non-zero roots: 

2 2  

6 7  
W + 0 = -R/A 

2 2  

6 7  
w w = C/A 
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CARTESIAN D Y N A M I C S  OF SIMPLF: MOLECULES. V 1  1005 

These roots correspond to the infrared active T[ modes, in which 

similar atoms move in phase. The higher frequency w mode has 

adjacent carbon atoms moving out of phase, the lower frequency w 

has them in phase, as shown in Figure 2(b). From the three 

bending mode frequencies, w (Raman), w and w (infrared), i t  

should he possible to derive optimum values for 61 ,  a2 and 
using equations (51, ( 6 )  and (71 ,  and hence values of the 

dependent transverse force constants, 63 and 6 . As for the 

longitudinal case, based on atomic proximities, i t  is expected 

that 6 and 6 will be much larger than 6 . 

U 

5 

RESIJLTS 

Bond lengths and observed fundamental vibrational frequencies 

for C302 and C3S2 are listed in Table 1. These values have been 

used with equations (1)  to (7) t o  obtain the force constants given 

in Table 2. These coupled equations are sufficiently complex that 

i t  was not possible to transform them to give the force constants 

directly as analytical expressions in terms of the frequencies. 

Instead, a numerical optimization routine known as SIMPLEX13 was 

used to approximatethe force constants. For both molecules, 

frequencies calculated from the optimized force constants are within 

1 cm-' of the observed values in all cases. In Table 3 ,  values of 

the normal mode frequencies for various isotopic species of these 

molecules are listed. These have been calculated using the force 

constants of Table 2. Unfortunately, experimental values of these 

frequencies for gas phase samples are unavailable for comparison. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
5
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



1006 LEFEBVRE ANL) A N D E R S O N  

TABLE 1 

Bond Lengths and Normal Mode Frequencies for A B Linear Molecules 
2 2  

Bond Lengths. Molecule 

'3'2 '3'2 
( A )  

~ 

P1 (C-C) 1.28 1 . 2 8  

P (C-XI 1.16 1 .54  

Frequencies' (cm-' ) 

w ((r + )  2196.9 1663 

w ((r + )  787 .7  489 .8  
1 ¶  

4- 
w ((r 1 2289.8 2100.0 

3 u  

w 4 u  ((r 1 1587.4 1030.2 

w ( n  1 580 .2  4-70 

w ( n u )  540 .2  502 

w ( n  1 1 8 . 3  9 3 . 7  

5 q  

7 u  

*From Ref 11 'From Ref 13. 

Calculated eigenvectors f o r  the seven normal modes of thcse two 

molecules are listed in Table 4. 

DISCUSSION 

Inspection of Table 2 shows the expected dominance of the 

longitudinal valence springs, kl and k2, f o r  both molecules. The 

longitudinal springs between non-bonded atoms, represented by k and 

kq, are much weaker. Similarly, the transverse force constants 

between adjacent atoms, 61 and 6 are much larger than those 

between non-bonded atoms, 6 and the dependent constants 6 and 6 . 

2' 

4 
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CARTESIAN DYNAMICS OF SIMPLE MOLECULES.  VI 1007 

TABLE 2 

Optimized Force Constants of A B Linear Molecules 
2 3  

Force Constants. 

(ucm-') 
- 

M o  1 ecu le 

c302 c3s2 
~ ~ 

2 .  5soox107 1 . 2 5 6 9 ~  10' 

1 , 4 0 3 5 ~  1 O7 1 . 5 5 6 0 ~ 1  O7 

2 . 1 4 2 ~ 1 0 '  7 . 0 9 ~ 1 0 ~  

2 .  28Sx10' 1 . 4 7 8 ~ 1 0 '  

1 . 5 9 4 ~ 1 0 '  1 .01sx106 

8 . 0 1 ~ 1 0 '  9 .  48x105 

-1 .  6 1 ~ 1 0 ~  -9. 9x104 

- 5 . 1 3 ~ 1 0 ~  - 4 . 1 ~ ~ 1 0 ~  

5 . 5 6 ~ 1 0 '  2 . 9 7 ~ 1 0 '  

*Units from k = pw2 where p is in atomic mass units ( u )  and w in 

wavenumbers (cm 1 .  Multiply table entries by 5.90x10- '  to 

convert to N/m or by 5 . 9 0 ~ 1 0 - ~  for dyne/cm. 

-1 

As for the previous molecules studied'-', the principal longitudinal 

force constants, which are mainly elastic in nature, are greater 

than their transverse counterparts, which result from electrostatic 

interactions, The 

model described in this paper allows a direct comparison between the 

transverse and longitinal force constants, as they are expressed in 

the same units of u in contrast to the more conventional 

approach which uses bending constants expressed in angular 

co-ordinates. 

as discussed in the first paper in this series'. 
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1008 L E F E B V R E  A N D  A N D E R S O N  

TABLE 3 

Calculated Frequencies f o r  Isotopic A B Linear Molecules* 
2 3  

Molecule Frequency (ern-' 1 

w W W w w 
l w  2 4 

w 
- _ _ ~ _ _ ~ - -  

16 12 12 12 16 

18 12 12 12 16 

16 13 12 12 16 

16 12 13 12 16 

18 12 12 12 18 

0 C C C 0 2196.9 787.7 2289.8 1587.4 580.2 540.2 18.3 

0 C C C 0 2179.5 770.8 2282.0 1569.6 577.4 536.8 17.8 

0 C C C 0 2157.4 783.7 2270.6 1586.1 572.2 531.6 18.0 

0 C C C 0 2196.9 787.7 2270.6 1548.9 580.2 536.6 17.5 

0 C C C 0 2164.4 754.0 2271.3 1552.2 574.4 534.0 17.7 

32 12 12 12 32 

34 12 12 12 32 

32 13 12 12 32 

32 12 13 12 32 

34 12 12 12 34 

S C C C S 1663.0 489.8 2100.0 1030.2 470.0 502.0 93.7 

S C C C S 1661.3 483.1 2099.7 1024.7 469.5 501.6 93.6 

S C C C S 1631.7 489.3 2082.5 1023.5 460.0 497.4 93.7 

S C C C S 1633.0 489.8 2056.9 1015.2 470.0 495.5 91.9 

S C C C S 1659.6 476.4 2099.4 1019.3 469.0 501.2 93.1 

*Force constants listed in Table 2 have been used. 

Also of interest are the differences between the principal 

interactions involving C-0 and C-S bonds. The force constant kl for 

C 0 is more than twice the value for C3S2 and I5 for C302 is more 

than 50% larger than the value for C3S2. On the other hand, the 

principal C-C interactions, k2 and A2, are somewhat less fo r  C302 

than their counterparts for C S . In particular, I5 is about 15% 

smaller for C302. This force constant is primarily involved in the 

v mode (approximately a CCC bend) which has an anomalously low 

value of 18 cm-I in C302. 

are involved, and there appears to be a partial cancellation of 

3 2  

3 2  2 

7 

However, other force constants (dland 
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CARTESIAN D Y N A M l C S  OF SIMPLE MOLECULES. V 1  

TABLE 4 

Eigenvectors for Normal Modes of A B Linear Molecules 
2 3  

Modc Mo 1 ecule 
~ ~ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ ~ ~ ~  ~~ ~~.~ 

- c302 c3s2 

0 - 
W 0.524 

1 

w 1.431 

w 0.428 
3 

w 3.248 

w 0.394 

4 

5 

w 0.481 

5 .426  

6 

w7 

Relative 

C 

0 

0 

0 . 8 5 8  

6 . 6 5 4  

0 

0 . .I 1 7 

- 

1 2 . 4 7  

Atomic Displacements* 

C 

0.167 0 

2 .246  0 

0 .090  1 .521  

0.662 1 . 5 2 3  

0.170 0 

0.179 1 . 0 4 7  

0 . 8 8 3  2 .711  

- _ _  S 

1009 

*Displacements of the non-central carbon atoms have been 

normalized to unity in all cases. C above refers to 

central carbon atom. See Figure 2 for phase 

relationships between all five atoms. 

their- various contributions, 

this mode is very small. Un 

so that the net restoring force 

ortunately, the analytical express 

for 

ons 

for the coupled modes v and v (equations 6 and 7 )  are sufficiently 

complex that the specific origin of this "softening" is not obvious. 

Because of the low resistance to bending, C 0 is often described as 

a "quasi-linear'' molecule. 

3 2  

In previous papers'-5, the validity of the models was verified 

by the agreement between calculated and observed frequencies of 
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1010 LEFEBVRE AND ANDERSON 

isotopically substituted molecules. However, very few observed gas 

phase frequencies of isotopic species of C 0 and C S are available 

to compare with our calculated values (Table 3 ) .  An alternative 

verification was adopted involving a comparison of calculated and 

observed frequencies for these molecules in condensed phases. These 

frequencies were previously calculated by Smith and co-workers 

with a model using 8 adjustable parameters instead of our 7. We 

have repeated the exercise using their observed frequencies for 

solid samples and our Cartesian model. Our calculated values are 

the same as theirs within t2 cm-', and this, together with the 

similar values obtained for the principal force constants, suggests 

that our model is essentially equivalent to the one described in 

their papers. For these condensed phases, however, intermolecular 

perturbations may be appreciable and change the effective values of 

the intramolecular constants. For example, v of C302 has its gas 

phase value of I 8  cm-' raised to 72 cm-I in the liquid. The 

absence of definitive crystal structure determinations for these 

mo 1 ecules precludes the possibility of lattice dynamics 

calculations at the present time. In addition, the lattice spectra 

are incomplete, although evidence for a solid state phase 

transition in C 0 has been ~bserved'~. The next paper in this 

series will deal with A BC planar molecules with C symmetry. 

3 2  3 2  

14-16 

3 2  

2v 
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