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CARTESIAN DYNAMICS OF SIMPLE MOLECULES
VI CENTROSYMMETRIC LINEAR PENTATOMICS

Key Words: Molecular vibrations; infrared spectroscopy;
Raman spectroscopy; lattice dynamics

J.H. Lefebvre* and A. Anderson

Department of Physics,
University of Waterloo,
Waterloo, Ontario,
Canada, N2L 3G1

ABSTRACT

A simple spring model for molecular vibrations, which uses
Cartesian co-ordinates for both longitudinal and transverse
displacements, is applied to centrosymmetric linear pentatomic
molecules such as carbon suboxide and carbon subsulphide.
Analytical expressions for the four stretching and three bending
mode frequencies are derived in terms of seven independent force

constants. By substitution of Raman and infrared frequencies,
values of these force constants are obtained and briefly
discussed. Eigenvectors of the normal modes and eigenfrequencies

of various isotopic species are also calculated.

INTRODUCTION

In previous papersl's, a simple spring model for molecular
vibrations, which uses Cartesian co-ordinates was described and
applied to diatomic, triatomic and quadratomic molecules. The

rationale for this approach, which was shown to be equivalent to
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the usual one involving internal co-ordinates, is that it may be
readily extended to lattice dynamics calculationsﬁ_lo, in which a
uniform treatment of both intra- and inter- molecular
interactions 1is used, leading to estimates of crystal field
splittings of internal modes as well as frequencies of lattice
modes. In this communication, the model 1is applied to the case
of linear pentatomic molecules, such as carbon suboxide and
carbon subsulphide.

Analytical expressions are derived for the normal mode
frequencies of these molecules in terms of longitudinal and
transverse force constants, atomic masses and bond lengths. Values
of these force constants are obtained by substitution of the
observed Raman and infrared fundamental frequencies. The form of
the normal modes is verified by calculation of the eigenvectors.
Finally, the eigenfrequencies of various Iisotoplic species are
calculated.

The geometry for these AZBa—type molecules, which have point
group Dmh, is shown in Figure 1(a). There are 15 degrees of
freedom, of which 3 correspond to pure translations and 2 to pure
rotations. The remaining 10 internal degrees of freedom comprise
4 longitudinal or stretching modes which have non-degenerate
representations (w1 and W, both of a; species and w, and w40f a;
species) and 3 transverse or bending modes, which have doubly
degenerate representations (wS of ng species and v, and w, of n
species). The 3 gerade modes are Raman active and the 4 ungerade

modes are infrared active. These 7 observed frequencies may be



03:56 30 January 2011

Downl oaded At:

CARTESIAN DYNAMICS OF STMPLE MOLECULES. VI 997

y

6+ 5e
T T T e T T
B / // \\\ .
e 2 S T TN
© & J % T X L e ()
\ \‘\ / \>{// P - . \./
63 64 63

FIG. 1 Geometry and Spring Constant Model for AZB3 Linear
Molecules
(a) Geometry, showing masses and bond lengths.
(b} Longitudinal Springs: kl, k2, k3 and k(

i : 3 .
(c) Transverse Springs . 62, 53, 84 and 65

used, in principle, to find values of 4 stretching and 3 bending
force constants.

DESCRIPTION OF THE MODEL

We first consider motion along the molecular z-axis and

derive expressions for wl, w2, w3 and w4. Following the
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R : . . . . s 1-3
principles outlined in earlier papers in this series , we

introduce longitudinal springs k1’ k_, k3 and k4 as shown in

2

Figure 1(b). The equations of motion in the 2z direction for the

5 atoms, according to Newton’'s second law and Hooke's law, are as

follows:

For harmonic oscillations, z = 2z cos wt, and so
n no

- 2 2
Z = w2z cos wt = ~wz

It is now convenient to introduce new variables, to make use of
the symmetry properties of the normal modes, as follows:

=z + z; =z_+ 2 = Z; =2z - z_ and =z -z
q H| e | H q4 1 s qs 2 4

When the equations of motion are re-written in terms of qn, a
5 x 5 secular matrix is obtained, the determinant of which has

the following block diagonal form:
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mw 2k -k K 2k 0 0
1 3 1
2

k m w -k -k 2k 0 0

1 1 2
K K m w -2k -2k 0 0 =

3 2 2

2
0 0 0 m -k -k K
A 1 3 1
2
0 0 0 K m w-k -k -2k
1 1 2

The lower block when expanded gives two roots, both non-zero,
which correspond to the Raman active modes, w1 and w2. A quadratic
equation is obtained of the form Aw' + Bw® + C = 0 and the following

relations are obtained:

2 2 _
Wl o+ W = -B/A = [k1 + 1<2]/mA + [k1 + k2 + qu]/ms (1)

W Wl = C/A = [k k, + kk, +kk +2kk +2kk ] mm (2)

12 12 13 23 14 34 AB
The exact form of the eigenvectors for these modes depends on the
values of the force constants, but the higher frequency mode
involves the symmetric stretching of both A-B and B-B bonds,
whereas the lower frequency mode is primarily the symmetric B-B
stretch, with the central B atom stationary in both cases. The
approximate form of these modes is shown in Figure 2(a).

The upper block of the determinant when expanded gives three
roots, one of which is the pure translational mode, wo, with zero
frequency. The other two correspond to the infrared active modes
w, and w,- A cubic equation in w° is obtained of the form

A’ + Bt +C® + D=0
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FIG. 2 Normal Modes of AZB3 molecules
(a) Longitudinal (Stretching) Modes.

(b) Transverse (Bending) Modes.
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It is readily shown after some algebraic manipulation that D = 0,
so that wz = 0 is a root. In addition, the following relations

are obtained for the other two roots:

W+ W = -B/A = [k +k]/m + [k + 3K +2k]/m (3)
4 1 3 A 1 2 3 B

2 2 2

ww=C/A=[kk+kk+kk][3m+2m]/mm (4)

3 4 12 13 23 B A B A

As for the Raman active modes, the eigenvectors for w, and w,
depend on the force constants, but the higher frequency mode, Wy
is the asymmetric combined A-B and B-B stretches and the lower
frequency mode primarily the asymmetric B-B stretch as shown in
Figure 2(a). It is noted that since the two non-central B atoms
are 1in phase for these modes, the force constant k4 does not
appear in equations {(3) and (4).

From the four stretching mode frequencies (two Raman and two
infrared), it should be possible to find optimum values for the
four force constants k1' k2, k3 and k4 using equations (1), (2),
(3) and (4). It is expected that those representing springs
between adjacent (bonded) atoms, k1 and k2, will be much larger
than those between more distant (non-bonded) atoms, k3 and k4.

We next consider motion perpendicular to the molecular axis.
Five transverse springs, 61, 62, 33. 64 and 65 are introduced.
These are displayed as bow symbols in Figure 1(c). It will be
shown later that only three of these transverse force constants
are independent. The equations of motion in the transverse

(x or y) direction have the following form:
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AR A N (AEEA A (A
mByZ =T 5'l [yZ - yl] h 82[y2 - y3] B 54 [y2 - yd] - 55[y? - y"x]
mBy3 = 3?()/3 - yZ] h 5?[)/3 h y4] h 53[}/3 h yl] h 63[y1 h yH]
A A e R R R A A A
mAyS T 61 [yS h ytl] h 53[)’5 h y3} h 65 [y‘i h yZ]

We now make the usual substitution for harmonic oscillations,
an 2 2
y = -wy cos wt=-wy
n no 1]

and introduce the following symmetry co-ordinates, similar to the

longitudinal case:

Py =Y, Y Y P, Ty, P YL P T YL P Y, Cy andp =y, m Y

The equations of motion are then re-written in terms of p, and
n

the following secular determinant in block diagonal form is

obtained:
mw’-8 -8 -8 5 +8 28 0 0
1 3 5 Y
5 +3 mlw -8 -8 -8 28 0 0
1 1 1 2 5 2
5 E; m w-28 -25 0 0 =0
3 2 2 3
0 0 0 m w-8 -5 -3 5 -8
A 1 3 5 1 S
2
0 0 0 8,-8 m -8 -8,-28,-5,
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This determinant 1is very similar to that obtained for the
longitudinal modes, with 8’s replacing k's and with 55 = 0.
Expansion of the lower 2 x 2 block leads to the following

equation:

where
A=mm,B=—[8 + 38 +6]m —[6 + 8 +28 +5]m
1 3 s 1 2 4 s) 2
and

c=[5 + 8 +a]{a + 8+ 28 +5]—[a -5]2
1 3 s 1 2 4 5 1 Y

In order for a zero frequency root to exist, C must be equal to
zero. Physically this results from a pure rotation about the

centre of mass, which for these molecules coincides with the

central atom. This mode is shown as w” in Figure 2(b). For
o

this motion, if Y, =Y, then y2 = ay, y3 = 0, Y, T "oy and

Ve = Y with a = Q / [ﬁ + ZJ. If these relations are

substituted into the first two equations of motion, together with

91 = 92 = 0, corresponding to no restoring forces, the following

two equations are obtained after some algebraic re-arrangement:

st -a) -1+l

64=-62/2+51[1—a]/2&—65[1+a]/2a

Substitution of these expressions for 63 and 64 into the equation

for the coefficient C confirms that it is indeed equal to zero.
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It is then easily shown that the non-zero root of the quadratic

equation has the following form:

2
o, = [51 - 65] [a/m2 + l/ocm1 (5)

This corresponds to the Raman active ng bending mode, the
approximate form of which is shown in Figure 2(b). The absence
of 62 in the equation for W, is explained physically by noting
that the central three B atoms maintain their linearity for this
mode, so that this bending force is not activated.

Expansion of the upper 3 x 3 block of the determinant lecads
to a cubic equation in w, of the following form:

AW’ + Bo' + W’ + D=0

After some routine algebra, it is confirmed that D = 0, so that
one root has =zero frequency. This corresponds to a pure
translation of the whole molecule in the transverse direction,
shown as wé in figure 2(b). Further manipulation of the
resulting quadratic equation leads to the following relations for

the two non-zero roots:

2 2 _
wot W= B/A (6)

= "‘[51 - <55]/mA + {352 + 51[2(1 - 1] —SS[Za + 1”/m8

2 2 .
wow = C/A (7)

= [3m + 2m ] [a62 - 8- 2865 + 085 - a8 8 - & - u52J/m2m
B A 1 1 1's 172 2's 5 s}/ 78" A
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These roots correspond to the infrared active nu modes, in which
similar atoms move in phase. The higher frequency W mode has
ad jacent carbon atoms moving out of phase, the lower frequency w,
has them in phase, as shown in Figure 2(b). From the three
bending mode frequencies, ws (Raman), w, and w, (infrared), it
should be possible to derive optimum values for 81, 32 and 55
using equations (5), (6) and (7), and hence values of the
dependent transverse force constants, 63 and 64‘ As for the
longitudinal case, based on atomic proximities, it is expected

that 61 and 52 will be much larger than 65

RESULTS

Bond lengths and observed fundamental vibrational frequencies
for C3O2 and C352 are listed in Table 1. These values have been
used with equations (1) to (7) to obtain the force constants given
in Table 2. These coupled equations are sufficiently complex that
it was not possible to transform them to give the force constants
directly as analytical expressions in terms of the frequencies.
Instead, a numerical optimization routine known as SIMPLEX'? was
used to approximatethe force constants. For both molecules,
frequencies calculated from the optimized force constants are within
1 (:m-1 of the observed values in all cases. In Table 3, values of
the normal mode frequencies for various isotopic species of these
molecules are listed. These have been calculated using the force
constants of Table 2. Unfortunately, experimental values of these

frequencies for gas phase samples are unavailable for comparison.
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TABLE 1

LEFEBVRE AND ANDERSON

Bond Lengths and Normal Mode Frequencies for A282 Linear Molecules

Bond Lengths* Molecule
() C.O C.S
e 372 372
21 (C-C) 1.28 1.28
22 (C-X) 1.16 1.54
Frequencies* (em™)
0 (¢ 2196.9 1663
g
w. (e ") 787.7 489.8
2 q
w, (o 7) 2289.8 2100.0
u
w, (o 7 1587.4 1030.2
u
w_ () 580.2 470
5 g
w (m) 540.2 502
6 u
w_ () 18.3 93.7
7 u
*From Ref 11 tFrom Ref 12
Calculated eigenvectors for the seven normal modes of these

molecules are listed in Table 4.
DISCUSSION
Inspection of Table 2

shows the

longitudinal valence springs, k1

expected dominance of

and k2, for both molecules.

two

the

The

longitudinal springs between non-bonded atoms, represented by k3 and

k , are much weaker.

A Similarly,

between adjacent atoms, 61 and 62,

are much

larger than

the transverse force constants

those

between non-bonded atoms, 65 and the dependent constants 63 and 54.
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TABLE 2

Optimized Force Constants of A283 Linear Molecules

Force Constants* Molecule
-2
(ucm 7) coO CS
3 2 3 2
N 7 7
K, 2.5800x10 1.2569%10
K, 1.4035x10° 1.5560%10"
k, 2.142x10° 7.09x10°
K, 2.288x10° 1.478x10°
3 1.594x10° 1.018x10°
5 8.01x10° 9.48%x10°
5, -1.61x10° -9 9x10°
(5)) -5.13%10° -4.12x10°
(5) 5.56x10° 2.97%10°

-

*Units from k = uwz where p is in atomic mass units (u) and w in

- -5
wavenumbers (cm ). Multiply table entries by 5.90x10 to
convert to N/m or by 5.90x10°° for dyne/cm.

As for the previous molecules studiedl_s, the principal longitudinal
force constants, which are mainly elastic in nature, are greater
than their transverse counterparts, which result from electrostatic
interactions, as discussed in the first paper in this series’. The
model described in this paper allows a direct comparison between the
transverse and longitinal force constants, as they are expressed in
the same units of u cm_z, in contrast to the more conventional
approach which uses ©bending constants expressed in angular

co-ordinates.
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TABLE 3

Calculated Frequencies for Isotopic AzBa Linear Molecules*

Molecule Frequency (cm™')

16.12.,12 1216

0'2c!%c1%c!% 2196.9 787.7 2289.8 1587.4 580.2 540.2 18.3
18912c12c12c1%  2179.5 770.8 2282.0 1569.6 577.4 536.8 17.8
169'3c1%c12c % 2157.4 783.7 2270.6 1586.1 572.2 531.6 18.0
16912c13c12c1%  2196.9 787.7 2270.6 1548.9 580.2 536.6 17.5
1812012012018, 2164.4 754.0 2271.3 1552.2 574.4 534.0 17.7
32g120120120325 1663.0 489.8 2100.0 1030.2 470.0 502.0 93.7
35120120120325 16613 483.1 2099.7 1024.7 469.5 501.6 93.6
3213012012095 16317 489.3 2082.5 1023.5 460.0 497.4 93.7
325120130120325  1633.0  489.8 2056.9 1015.2 470.0 495.5 91.9
3g1201201203g 1659 6 476.4  2099.4 1019.3 469.0 501.2 93.1

*Force constants listed in Table 2 have been used.

Also of interest are the differences between the principal
interactions involving C-O and C-S bonds. The force constant k1 for
C302 is more than twice the value for C382 and 81 for C302 is more
than 50% larger than the value for Casz' On the other hand, the
principal C-~C interactions, k2 and 62, are somewhat less for C302
than their counterparts for C3sz' In particular, 62 is about 15%
smaller for C302. This force constant is primarily involved in the
v, mode (approximately a CCC bend) which has an anomalously low

value of 18 cm ' in C302. However, other force constants (aland 65)

are involved, and there appears to be a partial cancellation of
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TABLE 4

Eigenvectors for Normal Modes of AzBa Linear Molecules

Mode o Molecule

CO CsS
32 32

Relative Atomic Displacements*

o £ S L
w, 0.524 0 0.167 0
w, 1.431 0 2.246 0
w, 0.428 0.858 0.090 1.521
w, 3.248 6.654 0.662 1.523
w, 0.394 0 0.170 0
W, 0.481 0.717 0.179 1.047
W, 5.426 12. 47 0.883 2.711

*Displacements of the non-central carbon atoms have been
normalized to unity in all cases. C above refers to
central carbon atom. See Figure 2 for phase

relationships between all five atoms.

their various contributions, so that the net restoring force for
this mode is very small. Unfortunately, the analytical expressions
for the coupled modes v, and v, (equations 6 and 7) are sufficiently
complex that the specific origin of this "softening" is not obvious.
Because of the low resistance to bending, C3O2 is often described as
a "quasi-linear” molecule.

In previous papersl_s, the validity of the models was verified

by the agreement between calculated and observed frequencies of
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isotopically substituted molecules. However, very few observed gas
phase frequencies of isotopic species of C302 and C3S2 are available
to compare with our calculated values (Table 3). An alternative
verification was adopted involving a comparison of calculated and
observed frequencies for these molecules in condensed phases. These
frequencies were previously calculated by Smith and co-workers'*7'®
with a model using 8 adjustable parameters instead of our 7. We
have repeated the exercise using their observed frequencies for
solid samples and our Cartesian model. Our calculated values are
the same as theirs within #2 cm_l. and this, together with the
similar values obtained for the principal force constants, suggests
that our model is essentially equivalent to the one described in
their papers. For these condensed phases, however, intermolecular
perturbations may be appreciable and change the effective values of
the intramolecular constants. For example, v, of C302 has its gas
phase value of 18 cm ' raised to 72 em ' in the liquid. The
absence of definitive crystal structure determinations for these
molecules precludes the possibility of lattice dynamics
calculations at the present time. In addition, the lattice spectra
are incomplete, although evidence for a solid state phase
transition in C302 has been observed'®. The next paper in this

series will deal with AZBC planar molecules with C2 symmetry.
v
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